Foal immunodeficiency syndrome: carrier testing has markedly reduced disease incidence

S. D. Carter, L. Y. Fox-Clipsham, R. Christley, J. Swinburne

FOAL immunodeficiency syndrome (FIS), a fatal autosomal recessive disease found in three breeds of horses, was first reported (in the Fell pony) in 1996, and it soon became apparent that significant numbers of syndrome foals were being born each year. In each FIS case, the foals are clinically normal at birth, but start to weaken at 2–8 weeks (Scholes and others 1998) as they develop profound anaemia (Dixon and others 2000) and do not have the ability to produce their own antibodies (Thomas and others 2005), due to the almost total lack of B lymphocytes in the circulation or tissues (Thomas and others 2003), but with apparently normal levels of functional T lymphocytes (Bell and others 2001). The outcome is persistent opportunistic infections with no effective treatment; euthanasia is the preferred option. FIS has also been reported in Fell ponies in The Netherlands (Butler and others 2006), Germany (May and others 2011) and USA (Gardner and others 2006). In 2009, we confirmed a case of FIS in a Dales pony foal (Fox-Clipsham and others 2009).

The search for the genetic lesion thus became paramount, as the carrier parents were clinically normal, and it was feared that there could be high carrier rates in breeding Fell and Dales ponies. In 2009, we identified a single nucleotide polymorphism (SNP) in a sodium transporter (SLC5A3) which was completely associated with FIS and was homozygous in FIS foals and heterozygous in FIS carriers (Fox-Clipsham and others 2011a). The SNP is a functional alteration and was homozygous in FIS foals and heterozygous in FIS carriers; only further population testing will confirm or deny this possibility.

The next key question was how effective the carrier test would be in reducing the numbers of FIS foals being born in subsequent years. There have now been two breeding seasons (2011 and 2012) prior to which the owners could avail themselves of the test and avoid carrier-carrier matings. The test findings (Table 1) provide considerable hope for the future.

The FIS carrier rate in breeding adult Fell and Dales ponies varies over the three years of testing, but this variation was statistically significant (X2(2df) p<0.3, and Fisher’s Exact Test p<0.6, respectively). Importantly, there was a lower number of FIS-positive (diseased) Fell pony foals in 2011 and 2012 (although this only approached statistical significance (X2(2df) p<0.03) and no FIS cases in Dales ponies in 2011 or 2012. Obviously, the datasets may be skewed because of the animals selected for testing, which may introduce some bias. However, as many carriers will have been identified previously from breeding records, there is no reason to suppose that FIS-positive breeding stock would be preferentially submitted.

It is clear that the owners and breeders have taken the advice we provided about avoiding carrier-carrier matings, and that this has led to a major reduction in the number of syndrome foals born in the last two years. Although the definitive figures are not available, the total number of breeding Fell ponies that have been FIS tested in the last three years (n=117) comprise a large proportion of the breeding population, and the testing has been done to guide breeding strategies. By the same measure, the 284 Dales ponies tested represent a large part of the breeding population of that breed.

Predictably, our breeding recommendations to use carrier-clear matings have not had a rapid impact on the large numbers of FIS carriers in the breeding populations of both breeds. Reducing car-

<table>
<thead>
<tr>
<th>Year</th>
<th>Number tested</th>
<th>Normal (%)</th>
<th>FIS carriers (%)</th>
<th>FIS diseased (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Fell ponies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adults</td>
<td>2010</td>
<td>565</td>
<td>290 (51)</td>
<td>275 (49)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>179</td>
<td>103 (56)</td>
<td>76 (43)</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>106</td>
<td>60 (57)</td>
<td>46 (43)</td>
</tr>
<tr>
<td>Foals</td>
<td>2010</td>
<td>142</td>
<td>72 (51)</td>
<td>58 (41)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>108</td>
<td>60 (56)</td>
<td>39 (36)</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>71</td>
<td>32 (45)</td>
<td>38 (54)</td>
</tr>
<tr>
<td>(B) Dales ponies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adults</td>
<td>2010</td>
<td>180</td>
<td>158 (88)</td>
<td>22 (12)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>53</td>
<td>44 (83)</td>
<td>9 (17)</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>36</td>
<td>32 (89)</td>
<td>4 (11)</td>
</tr>
<tr>
<td>Foals</td>
<td>2010</td>
<td>10</td>
<td>9 (90)</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>4</td>
<td>3 (75)</td>
<td>1 (25)</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>1</td>
<td>1 (100)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>
rier numbers will either take much longer using the current breeding approach, or a change in breeding strategy to avoid breeding from carriers at all. With the carrier rate so high in the Fell ponies, such a restrictive recommendation would probably be unacceptable to many breeders, and would risk depleting the gene pool. On the other hand, the breeders who choose carrier-clear matings will need to test their offspring to see if their foal is a carrier.

The results are consistent with uptake of the FIS carrier test by the owners of at-risk ponies, and suggest that they have also taken our advice about breeding strategies to reduce the numbers of FIS-positive foals. This is a significant and swift impact of modern genomic technologies in clinical veterinary medicine, and is a healthy indicator of veterinary scientists and animal breeders working well together to improve animal welfare.

References

Foal immunodeficiency syndrome: carrier testing has markedly reduced disease incidence

S. D. Carter, L. Y. Fox-Clipsham, R. Christley and J. Swinburne

Veterinary Record 2013 172: 398 originally published online March 13, 2013
doi: 10.1136/vr.101451

Updated information and services can be found at:
http://veterinaryrecord.bmj.com/content/172/15/398.2

These include:

References
This article cites 10 articles, 4 of which you can access for free at:
http://veterinaryrecord.bmj.com/content/172/15/398.2#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/