Seroprevalence of vectorborne diseases in free-roaming dogs in Goa, India

A. E. Wise, R. E. Tarlinton

A majority of the Indian dogs are ‘community dogs’, semiferal dogs which are partially dependent on the human population and feral dogs. Communicable diseases may be a problem due to overcrowding, minimal veterinary care, and a climate favouring parasites and vectors. Some reports suggest that the vectorborne diseases, such as filariosis, babesiosis and ehrlichiosis, are endemic throughout India. However, there is little information concerning disease epidemiology in Indian dogs (Megat Abd Rani and others 2010a).

Vectorborne diseases of dogs are of particular interest, as pathogens such as Borrelia burgdorferi sensu lato (the agent of Lyme disease) are a zoonotic risk in addition to causing disease in their canine hosts (Megat Abd Rani and others 2010a). The pathogens examined here, the tickborne B burgdorferi sensu lato, Erlichia canis, Anaplasma platys and the mosquito-borne Dirofilaria immitis, are regarded as endemic in the dog populations in warm climate zones, worldwide.

The reported prevalence of E canis within India varies with 0.35 per cent and 18.9 per cent of dogs identified with canine ehrlichiosis by stained blood smears in Punjab and Nagpur, respectively (Juyal and others 1994, Samaradni and others 2003, Megat Abd Rani and others 2010a). Studies in Chennai reported that 50 per cent of privately-owned dogs tested positive for E canis when using species-specific PCR compared with 19 per cent by microscopy (Lakshmanan and others 2007, Megat Abd Rani and others 2010a). The pathogens examined here, the tickborne B burgdorferi sensu lato, Erlichia canis, Anaplasma platys and the mosquito-borne Dirofilaria immitis, are regarded as endemic in the dog populations in warm climate zones, worldwide.

Within India, there is little information concerning disease epidemiology in Indian dogs (Megat Abd Rani and others 2010a). The pathogens examined here, the tickborne B burgdorferi sensu lato, Erlichia canis, Anaplasma platys and the mosquito-borne Dirofilaria immitis, are regarded as endemic in the dog populations in warm climate zones, worldwide.

FIG 1: Seroprevalence of Dogs to Dirofilaria immitis, Anaplasma platys, Erlichia canis and Borrelia burgdorferi (N=48)

FIG 1: Seroprevalence of Dogs to Dirofilaria immitis, Anaplasma platys, Erlichia canis and Borrelia burgdorferi (N=48)

13 per cent in Mumbai and Delhi but is absent in more temperate climate zones (Megat Abd Rani and others 2011).

Blood samples from 48 dogs undergoing surgical sterilisation as part of an animal birth control programme at Animal Tracks, a Veterinary Centre run by the International Animal Rescue in North Goa, India, were tested for D immitis antigen, B burgdorferi sensu lato, Anaplasmata species and E canis antibody using the SNAP 4Dx Test (IDEXX) kit according to the manufacturer’s instructions. Biometric data including age, weight, sex and body condition on a five-point scale, and the area from which the dog was captured, were recorded for each animal. A summary of the samples collected is shown in Table 1. Samples were collected over an eight-week period in August and September 2011.

This project was approved by the University of Nottingham, School of Veterinary Medicine and Science, non-ASP A (animals (scientific procedures) act) ethical committee.

Statistical testing of the associations between the biometric parameters and the disease was performed by chi-squared analysis using the MinTab version 15.1.0.1(Mintab) statistical package.

Of the 48 dogs tested, 21 per cent (10) and 19 per cent (nine) tested positive for A platys and E canis, respectively. Co-infection with these two species was found in 10 per cent (five of 48) of the dogs tested. No cases of D immitis or B burgdorferi were found (Fig 1). There was a significant association for co-infection with A platys and E canis (P<0.005). No other significant associations were found.

This short communication provides further evidence for the presence of A platys in Indian dogs with a seroprevalence of 21 per cent. This is very similar to the recent report by Megat Abd Rani and others (2011) of a PCR-based prevalence of 27.2 per cent for A platys in Mumbai, which is only 600 km north of Goa and in a similar climate zone. The prevalence of E canis (19 per cent) in this short communication is consistent with the other studies on this pathogen in India, which suggest prevalences from 0.35 to 50 per cent (Juyal and others 1994, Samaradni and others 2003, Lakshmanan and others 2007, Megat Abd Rani and others 2010a, Megat Abd Rani and others 2011).

Co-infection of A platys and E canis was found in 10 per cent of dogs; this association was statistically significant (P<0.005). This would suggest transmission by a common vector, most likely Rhipicephalus sanguinus, which is known to be the vector of E canis (Nicholson and others 2010), and thought to be the vector of A platys (Yabbesley and others 2008). Rhipicephalus species ticks are also known to form almost 100 per cent of the tick infestations in street dogs in the urban areas of India (Megat Abd Rani and others 2011) with up to 80 per cent of the dogs infested. The study also reported a similar rate of co-infections with A platys and E canis (4.5 to 7 per cent) in Mumbai and Delhi, respectively. The IDEXX 4Dx kit used in the present study is unable to distinguish between A platys and Anaplasma
phagocytophilum; however, given that Megat Abd Rani and others (2011) identified dogs infected with *A. platys* by PCR in a nearby geographical location at a similar prevalence, the seroreaction in the present study is likely to be due to this species and the authors have assumed this throughout this short communication.

No cases of *B. burgdorferi* were found in the dogs in this study. This may be a factor of the small number (42) of animals tested; however, there have been other studies in India reporting the absence of this pathogen (Handa and others 1999). Either the test kits are not able to detect Indian strains of this pathogen or it may be genuinely absent from India despite the presence of suitable vectors. Resolution of this question would require direct testing for the pathogen, either by culture or PCR rather than the indirect serological method utilised here.

One false-positive test for *D. immitis* was recorded in this study. Microfilariae were observed by light microscopy in thick blood smears from one dog that tested negative for *D. immitis* (data not shown); these, together with *A. reconditum*, species that have been reported in southern India (Ananda and others 2002, Sabu and others 2005, Megat Abd Rani and others 2010b). Crossreactions with *D. repens* (data not shown); these, *Acanthocheilonema reconditum* and *A. platys* by PCR in a nearby geographical area (Borthakur and others 2006, Megat Abd Rani and others 2010b). The present study supports this theory.

This study has provided evidence for the presence of *A. platys* and *E. canis* in community dogs in Goa that will allow local veterinarians to presumptively treat dogs showing clinical signs of erlichiosis or anaplasmosis. The high prevalences of these parasites would indicate a significant risk for tickborne diseases in both the human and dog populations in this area, though the exact vector and pathogen systems involved require further work to be clarified.

TABLE 1: Summary of the morphometric data of dogs sampled for this study

<table>
<thead>
<tr>
<th>Number of animals</th>
<th>Mean (se) body condition score</th>
<th>Mean (se) bodyweight (kg)</th>
<th>% owned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults (>2 years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>13</td>
<td>2.5 (0.1)</td>
<td>12.7 (0.6)</td>
</tr>
<tr>
<td>Female</td>
<td>9</td>
<td>2.8 (0.2)</td>
<td>14.4 (0.8)</td>
</tr>
<tr>
<td>Juveniles (<2 years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>5</td>
<td>2.0 (0.0)</td>
<td>11.6 (0.7)</td>
</tr>
<tr>
<td>Female</td>
<td>21</td>
<td>2.4 (0.1)</td>
<td>12.6 (0.7)</td>
</tr>
<tr>
<td>Total</td>
<td>48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acknowledgements

The authors thank Carl Regan for his help and support in data collection and throughout the project; Astrid Almeida, all the staff and volunteers at Animal Tracks veterinary centre for their help and enthusiasm for this project; and the Universities Federation for Animal Welfare, University of Nottingham and the University Association Fund Award for their vital funding.

References

Seroprevalence of vectorborne diseases in free-roaming dogs in Goa, India

A. E. Wise and R. E. Tarlinton

Veterinary Record 2012 170: 76 originally published online October 29, 2011
doi: 10.1136/vr.100169

Updated information and services can be found at:
http://veterinaryrecord.bmj.com/content/170/3/76.1

These include:

References
This article cites 12 articles, 0 of which you can access for free at:
http://veterinaryrecord.bmj.com/content/170/3/76.1#BIBL

Open Access
This paper is freely available online under the BMJ Journals unlocked scheme, see http://veterinaryrecord.bmj.com/info/unlocked.dtl

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Open access (110)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/